Press releases

Whether it is new and groundbreaking research results, university topics or events – in our press releases you can find everything you need to know about the happenings at Goethe University. To subscribe, just send an email to ott@pvw.uni-frankfurt.de

Goethe University PR & Communication Department 

Theodor-W.-Adorno Platz 1
60323 Frankfurt 
presse@uni-frankfurt.de

 

Aug 4 2015
13:56

Legal scholar Dr. Matthias Goldmann and archeologist Dr. Nikolas Gestrich receive coveted VolkswagenStiftung fellowship

Two new “free spirits” for Goethe University

FRANKFURT. A great success for Goethe University: The jury of the coveted ‘Freigeist’ Fellowship awarded by VolkswagenStiftung, the Volkswagen Foundation, has chosen not one, but two of Frankfurt’s junior researchers as winners – along with six other young scientists from all over Germany. Legal scholar Dr. Matthias Goldmann studies the relationship between the economic sciences and law, while archeologist Dr. Nikolas Gestrich explores the relationship between statehood, urbanism and trade in pre-colonial West Africa. The Volkswagen Foundation will put up a total of 5.3 million Euros over the coming five years to fund the eight research projects.

Dr. Matthias Goldmann

Matthias Goldmann, born in 1978, studied Law in Würzburg, specializing in European and international law. After taking his first state examination, he spent one year at the International Criminal Tribunal for Rwanda. He then took a doctoral position at the Max Planck Institute for Comparative Public Law and International Law in Heidelberg. Following his second state examination he obtained a Master of Laws from New York University School of Law. In his PhD thesis, supervised by the Director of the Max Planck Institute for Comparative Public Law and International Law, Prof. Armin von Bogdandy, Goldmann developed the concept of “international public authority” as a new legal focus for the ever-growing activities of international institutions in the course of globalization. It allows applying international law to instruments of international institutions such as the PISA Study or the Basel Accords which defy traditional legal categories.

In his fellowship project, Goldmann is turning his attention to the financial system, albeit he focuses again on fundamental issues. This time, it is about the relationship between two closely related disciplines: economics and the law. What is the understanding of law underlying economic knowledge, or the idea of economic knowledge implicit in legal practice? Goldmann thinks that both need to improve. Economic knowledge informs the legal regulation of the financial system and financial markets. Often, however, the respective legal rules are so vague that they disappoint the expectation implicit in the underlying economic knowledge that the law will successfully control market actors’ behavior. In turn, when those applying legal rules rely on economic insights, they realize that economic knowledge is highly disputed and subject to change. Not a good basis for an enduringly stable market economy.

One example is what is known as the no-bail-out clause in European contracts. During the financial crisis many economists agreed that the clause had been violated, but the European Court of Justice ruled otherwise. “There is no red line that can’t be crossed,” as Goldmann puts it. His theory is that we need to understand the law as a far more flexible tool, one that first and foremost serves to structure decision-making processes. Hence, “Stability through Deliberation: Finance and Public Law” is the title of his fellowship project. Ultimately, he aims at the development of legal principles which acknowledge the flexibility in the relationship between economics and the law and might therefore help stabilize the financial system. At any rate, according to Goldmann, economists and legal scholars need to engage in far more intensive exchange.

For the duration of his fellowship Matthias Goldmann, who has been collaborating with the Normative Orders Cluster of Excellence since 2013, will be based at the House of Finance, for him one of the “most renowned institutes in the banking sector.” Does he consider himself a “free spirit”? “Not necessarily more than others. After all, every scholar should strive to test his limits. The pursuit of knowledge presupposes freedom,” says Goldmann, who is to begin his fellowship in January 2016.

Dr. Nikolas Gestrich

Dr. Nikolas Gestrich is to return from the UK for his ‘Freigeist’ project. The 31-year-old German-British scholar grew up in Stuttgart and studied Archeology in Durham, going on to complete his Master’s at University College London. It was here that he also obtained his doctorate, with a thesis on the topic “The Archaeology of Social Organisation at Tongo Maaré Diabal.” He was initially attracted to UK study programs as he believes they tend to concentrate more strongly on methodology and practical work, and students don’t need to choose a direction as early as in Germany. Now however, his focus is clear: He is particularly interested in the complex societies of pre-colonial West Africa. The title of his ‘Freigeist’ project is “The Relationship of Urbanism and Trade to State Power in the Segou Region of Mali.”

“Mali’s earlier history is extremely interesting, but is still not well understood,” says Gestrich. Though largely lacking the traditional signs of civilization, such as writing or palaces and monuments, this was clearly an advanced civilization with large cities that could have held more than 50,000 inhabitants. This urban form developed around the middle reaches  of the River Niger in Mali as early as around 800 BC. From around 400 AD, states emerged that controlled a large part of West Africa. Taking the example of the Markadugu, a network of former trading cities, Nikolas Gestrich now aims to investigate the relationship between states, cities and trade in pre-colonial West Africa and clearly demonstrate that their structures were considerably more complex and mutable than previously thought.

In his research Nikolas Gestrich seeks to combine archeological methods with those of history and anthropology. He will analyze archeological sites with the help of modern technologies and relate them to written Arabic sources – and to histories passed down through oral tradition. “To this day in Mali an entire social category specialises on memorizing and telling stories in public. Within families too, past events are passed down through the centuries,” notes Gestrich, who will collaborate with African scientists in his project. He will be based at the Frobenius Institute at Goethe University, where the African Archeology and African Studies departments offer him ideal research conditions. “Moreover, the institute has a library for this subject that is unparalleled in Germany,” says Gestrich. He was delighted to learn that he had been selected for a ‘Freigeist’ Fellowship: “Given that so many specialist fields were considered I think it is excellent that my project was selected – after all, it is a rather unusual research topic.”

 ‘Freigeist’ Fellowship

Excellent researchers and extraordinary personalities – this is the focus of the ‘Freigeist’ Fellowship scheme, running this year for the second time. With the initiative, the Volkswagen Foundation aims to support scholars who are at home in areas that straddle established research fields and wish to engage in unconventional, high-risk research. The fellowship affords them a wide scope in terms of subject and a clear timeframe. Junior scientists who received their doctorate no longer than five years ago can apply. This year a total of 156 funding applications were submitted. The official awards ceremony will take place on September 25 at the conference center at Schloss Herrenhausen in Hanover.

 

Jul 7 2015
13:43

New LOEWE focus on prehistory and early history at the Goethe University

Conflicts 4000 years ago

FRANKFURT. The Goethe University (Goethe-Universität Frankfurt) once again has reason to celebrate a success in the Hessian LOEWE excellence initiative. It was revealed that the application for research focusing on "Prehistoric Conflict" under the direction of Rüdiger Krause, Professor of Prehistory and Early History in Frankfurt was successfully defended before the external jury. The approved state funds totalling approximately 3.7 million Euros over three years will make it possible to fill a major research gap in Central European archaeology and to use an interdisciplinary approach to study Bronze Age forts between the Taunus and the Carpathian mountains.

"We are delighted about the new LOEWE research focus on archaeology at our University", said Manfred Schubert-Zsilavecz, Vice President of the Goethe University, after the outcome had been announced. "The decision is further confirmation that research at the Goethe University is also strong in the humanities and social sciences", according to Schubert-Zsilavecz. The Goethe University now acts as the lead institution in six LOEWE centres and nine LOEWE focal research areas.

Prof. Krause will coordinate the new research focus jointly with Prof. Svend Hansen, Director of the Eurasia Department at the German Archaeological Institute, Berlin. Other persons involved will include Frankfurt’s Sociologist Sighard Neckel, Historian Bernhard Jussen and Geographer Heinrich Thiemeyer. A partner outside the University is the Roman Germanic Commission of the German Archaeological Institute in Frankfurt.

Roman forts and medieval fortifications are well known, and some still shape Europe's cultural landscapes today. However, during the Bronze Age, starting at the turn of the 17th to 16th century BCE, people were already constructing the first settlements fortified with strong walls to protect themselves against attackers and to control transit routes. Until now, little research has been performed on these Bronze-Age forts, even though  they were a phenomenon that marked Central Europe for almost two millennia.

Moreover, a new view of the Bronze Age reveals  a darker side to the subject, explains Prof. Rüdiger Krause, who will be the lead in this research area. This is because the subject of war and conflict has only very recently become a focal point of research on this phase of prehistory. The absolute certainty that there were military conflicts on a major scale is evident not only from the existence of fortifications but also from the development and spread of new weapons such as single-edged and stabbing swords, as well as protective shields. Research no longer refers to the "Bronze Age Heroes" whose weaponry and equipment were primarily symbols of prestige, but rather to the idea of warrior groups who systematically attacked their neighbours and sometimes committed large-scale massacres.

The LOEWE research focus will now provide a new empirical basis for the phenomenon of the Bronze-Age fort: modern methods in prospecting will enable new and more insights into the structure of the facilities, while excavations will be planned and conducted with precision. The focus of this work will be on the social histoical perspective of violent conflict in the Bronze Age and a comparison with conditions in the early Middle Ages.


The LOEWE Fund was launched in 2008 with the goal of providing impetus for research and strengthening the position of the state of Hesse as a research location. It primarily promotes collaboration between higher education and other research institutions, providing universities with an opportunity to sharpen their profile further. Moreover, the intent is to lay the groundwork for additional federal and state-funded research institutions. Within the eighth grant echelon, three new projects are being funded with a total of 12 million Euros for a period of three years. Apart from the archaeologists at the Goethe University in Frankfurt/Main, two focal areas of research are also being supported at the Technical University in Darmstadt.

 

Jun 25 2015
11:51

Higher brain regions are only activated when predictions are false.

How does the brain recognize faces from minimal information?

FRANKFURT Our brain recognizes objects within milliseconds, even if it only receives rudimentary visual information. Researchers believe that reliable and fast recognition works because the brain is constantly making predictions about objects in the field of view and is comparing these with  incoming information. Only if mismatches occur in this process do higher areas of the brain have to be notified of the error in order to make active corrections to the predictions. Now scientists at the Goethe University have confirmed this hypothesis. As they report in the current edition of the "Journal of Neuroscience", those brain waves that are sent to higher brain areas increase their activity when a predictive error occurs. These results also promise a better understanding of schizophrenia and autism spectrum disorders.

In order to induce predictive errors in their subjects, the researchers showed them so-called Mooney faces, named after their inventor Craig Mooney. These are photographs of faces which have been reduced entirely to black and white. We usually recognize these easily. We can even give details about the gender, age and facial expression – despite the fact that only the borders between black and white contain any information about the face. Moreover, even this minimal amount of information is ambiguous, because the boundaries either represent the transition between light and cast shadows or they confine the object itself.

"In our study, we used Mooney faces which intentionally violated two expectations: Firstly, that we always see faces oriented upright, and secondly, that light comes from above. The facial recognition performance became noticably poorer and slower as a result", Prof. Michael Wibral from the Brain Imaging Center at the Goethe University explained.

What happens in the brain in this situation? The current theory, the "Predictive Coding" theory, suggests that signals only have to be sent to higher brain areas for processing if predictions aren't met. Thus an increase in signal activity towards higher brain areas should occur. However, there are also competing theories which predict the exact opposite.

Testing the theory directly only became possible recently, when Frankfurt scientists at the Strüngmann Institute discovered that brain wave activity at about 90 Hertz increases when signals are sent from lower to higher brain areas. "If a predictive error is induced by generating images which contradict the everyday visual reality learned over the course of a lifetime, then we should see an increase in brain wave activity at 90 Hertz in response to an error. We were able to confirm this experimentally", Wibral explained. "And we were also able to show that the intensity of these 'error brain waves' increases along with the time necessary for recognition. This shows that these brain waves don't just initiate a correction, but also play a causal role in our perception", Wibral continued. The results are important specifically because these brain waves also appear to be significantly impaired in patients with schizophrenia and autism spectrum disorders. This was shown through measurements taken in the laboratory of the Frankfurt Brain Imaging Centre over the past few years. The researchers are now hoping to gain a better understanding of both illnesses and to find ways of helping patients to correct their predictive errors more effectively.

Publication
Alla Brodski, Georg-Friedrich Paasch, Saskia Helbling, and Michael Wibral: The Faces of Predictive Coding, in: Journal of Neuroscience, 17 June 2015 • 35(24):8997–9006 • 8997, DOI: 10.1523/JNEUROSCI.1529-14.2015;

Information: Prof. Michael Wibral, MEG Labor, Brain Imaging Center, Klinikum der Goethe Universität, Tel.: +49(0)69 6301 83193, Wibral@bic.uni-frankfurt.de.

An image for downloading is available here: www.uni-frankfurt.de/56080403

Caption: The black and white transitions which indicate shadow borders (red arrow) and those which are object edges (green arrow) are marked on the left Mooney face. The middle image shows an upside-down image lit from above, while the image on the right is inverted and lit from below.

 

Jun 10 2015
13:06

Luminescent blue boron-containing nanographenes are highly promising materials for portable electronic devices

New boron compounds for organic light-emitting diodes (OLEDs)

FRANKFURT. Major advances in the field of organic electronics are currently revolutionising previously silicon-dominated semiconductor technology. Customised organic molecules enable the production of lightweight, mechanically flexible electronic components that are perfectly adapted to individual applications. Chemists at the Goethe University have now developed a new class of organic luminescent materials through the targeted introduction of boron atoms into the molecular structures. The compounds described in the professional journal "Angewandte Chemie" (Applied Chemistry) feature an intensive blue fluorescence and are therefore of interest for use in organic light-emitting diodes (LED's).
 
Carbon in the form of graphite conducts the electrical current in a similar way to a metal. In addition, its two-dimensional shape, the graphene layer, has extremely attractive optical and electronic properties. In graphene, the discoverers of which were awarded the Nobel Prize for Physics in 2010, countless benzene rings are fused to form a honeycomb structure. Sections of this structure, so-called nanographenes or Polycyclic Aromatic Hydrocarbons (PAHs), constitute an important basis of organic electronics.

"For a long time, efforts were largely focused on affecting the properties of nanographenes by chemically manipulating their edges", according to Prof. Matthias Wagner of the Institute for Inorganic and Analytical Chemistry at the Goethe University. "However, in recent years, researchers have been increasingly capable of also modifying the inner structure by embedding foreign atoms in the carbon network. This is where boron assumes crucial significance."

A comparison of the new boron-containing nanographenes with the analogous boron-free hydrocarbons verifies the fact that the boron atoms have a decisive impact on two key properties of an OLED luminophore: the fluorescence colour shifts into the highly desirable blue spectral range and the capacity to transport electrons is substantially improved. To date, only limited use could be made of the full potential of boron-containing PAHs, since most of the exponents are sensitive to air and moisture. "This problem does not occur with our materials, which is important with regard to practical applications" explains Valentin Hertz, who synthesised the compounds within the scope of his doctoral dissertation.

Hertz and Wagner anticipate that materials such as the graphene flakes they have developed will be particularly suitable for use in portable electronic devices. As film displays for future generations of smartphones and tablets, even large-scale screens could be rolled up or folded to save space when the devices are not in use.


Publication
V. Hertz et al: Boron-Containing PAHs: Facile Synthesis of Stable, Redox-Active Luminophores, in: Angew. Chem. Int. Ed. 2015, DOI: 10.1002/anie.201502977;
http://onlinelibrary.wiley.com/doi/10.1002/anie.201502977/abstract

Information
Prof. Dr. Matthias Wagner, Institute for Anorganic and Analytic Chemistry, Riedberg Campus, Tel.: +49 (0) 69 798-29156, Matthias.Wagner@chemie.uni-frankfurt.de

 

Jun 3 2015
13:37

Frankfurt scientists discover new molecular mechanisms that eliminate intracellular damages – Mutations in this pathway trigger neurodegenerative diseases

Controller in the Cell

FRANKFURT. Quality control is important – this is not only applicable to industrial production but also true for all life processes. However, whereas an enterprise can start a large-scale recall in case of any doubt, defects in the quality control systems of cells are often fatal. This is seen in particular in neurodegenerative diseases such as Alzheimer's, Parkinson's, or amyotrophic lateral sclerosis (ALS), in which fundamental mechanisms of cellular quality control fail.

A Frankfurt research team led by Ivan Dikic, Professor for Biochemistry, now successfully decoded  molecular details enabling a better understanding  of two neurodegenerative diseases. Their work focuses on "autophagy" as a central element of cellular quality control. Autophagy literally means "self-eating", and refers to a sophisticated system in which cellular waste is specifically detected, surrounded by membranes, and removed. Typical targets are harmful or superfluous proteins or cell organelles, even pathogens such as bacteria or viruses can be eliminated via this pathway.

Together with colleagues from Jena, Aachen, and The Netherlands, the team of Ivan Dikic has now identified a new autophagy receptor, the so-called FAM134B protein. In the online issue of the renowned journal Nature, the researchers report a new function of FAM134B in the constant renewal of the endoplasmic reticulum (ER), an important cell organelle. FAM134B  ensures proper breakdown and disposal of dysfunctional ER.
"Too little FAM134B leads to an uncontrolled dilation and expansion of this organelle, which is harmful for the cell", explains Ivan Dikic. "The discovery of FAM134B as a new autophagy receptor is already a milestone. Even more exciting is the connection to a rare neuronal hereditary disease". Collaborators from the Human Genetics Department at the University Hospital of Jena, PD Ingo Kurth and Professor Christian Hübner, already demonstrated in 2009 that mutations in FAM134B cause the death of sensory neurons in a disorder called hereditary sensory and autonomic neuropathy type II (HSAN II). The exact function of FAM134B, however, remained unknown until now.

HSAN II is a very rare hereditary disease in which both pain and temperature sensitivity and perspiration are impaired. For example, affected patients burn and hurt themselves easily, because they cannot feel heat and pain signals. Mutation of FAM134B in a mouse model leads to a similar syndrome "The mutated protein cannot function as a receptor. With these discoveries we have taken a big step to understanding the molecular causes of this neuropathy. At the same time, the importance of autophagy in cellular quality control is underlined", explains Dikic.

His laboratories at the Institute for Biochemistry II (IBC II) and at the Buchmann Institute for Molecular Life Sciences (BMLS) recently participated in another groundbreaking study of a neurodegenerative disease, ALS. Typically, ALS leads to death after three to four years due to the massive loss of motor neurons ALS (Amyotrophic lateral sclerosis ) is a devastating disease characterized by loss of motor neurons and neurodegeneration, usually leading to death within 3-4 years. Despite being classified as rare disease, public awareness is very high, fueled by celebrity patients like Stephen Hawking and culminating in last years’ Ice Bucket Challenge, the first charity campaign with global impact. Still, there is no treatment for ALS, despite intensive research in the field.   

As reported in the title story of Nature Neuroscience’s May issue, an international team has now progressed significantly in understanding gene defects responsible for ALS. The scientists discovered that mutations in a specific enzyme, Tank-binding kinase (TBK1), occur more frequently in families with ALS. The Dikic lab was particularly involved in clarifying the function of TBK1 and was able to show that the mutations found in patients interrupt the interaction of TBK1 with the autophagy receptor optineurin. Optineurin is involved, for example, in the elimination of aggregated proteins and bacterial infection defense. Co-lead author Dr. Benjamin Richter comments: " For me as a medical doctor working in basic science this story represents the ideal case of explaining the pathophysiology of a disease by a collaborative effort across disciplines. ".

"The two studies show in an unparalleled way how general concepts can be developed from individual findings", emphasizes Ivan Dikic. When cellular quality control in neurons fails over a long time, the consequences for the overall organism are disastrous. "Autophagy has crystalized as a common central mechanism of cellular quality control in neurodegenerative disease", says Dikic.

Ivan Dikic (49) is leading his lab at the Goethe University in Frankfurt am Main since 2002; he is the director of Institute for Biochemistry II since 2009; and was the  Founding Director of the Buchmann Institute for Molecular Life Sciences at the Riedberg Campus. Born in Croatia, he studied medicine in Zagreb, followed by a doctorate in natural sciences at the University of New York and the establishment of his first independent research group at the Ludwig Institute for Cancer Research in Uppsala (Sweden). In 2013, he received the Leibniz Prize of the German Research Foundation (DFG), the most prestigious German scientific prize. Furthermore, he has been honored with numerous other awards, including the Ernst Jung Prize for Medicine (2013), the William C. Rose Award of the American Society for Biochemistry and Molecular Biology (2013), and the German Cancer Prize (2010). He is a member of the German National Academy of Sciences and EMBO (European Molecular Biology Organisation) In 2010 he won an advanced investigator grant from the European Research Council (ERC), and he is the spokesperson for the LOEWE focus project Ubiquitin Networks, in the context of which parts of the now published work were done.

Image for download:
www.uni-frankfurt.de/55863443

Publications:
A. Khaminets et al.: Regulation of endoplasmic reticulum turnover by selective autophagy. Nature, doi: 10.1038/nature14498, Advance Online Publication (AOP): http://www.nature.com/nature

A. Freischmidt et al.: Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia Natur Neuroscience, Nature Neuroscience
18,
631–636
(2015),
doi:10.1038/nn.4000http://www.nature.com/neuro/journal/v18/n5/full/nn.4000.html

Contact: Prof. Dr. Ivan Dikic, Goethe-Universität Frankfurt, Phone +49 (0)69 6301 5964, Email: dikic@biochem2.uni-frankfurt.de