Press releases

Whether it is new and groundbreaking research results, university topics or events – in our press releases you can find everything you need to know about the happenings at Goethe University. To subscribe, just send an email to ott@pvw.uni-frankfurt.de

Goethe University PR & Communication Department 

Theodor-W.-Adorno Platz 1
60323 Frankfurt 
presse@uni-frankfurt.de

 

Sep 12 2019
09:59

Ozone hole, fires in the Amazon, and gravity waves are focus of German research aircraft HALO

Climate change in the Southern Hemisphere 

FRANKFURT. On its mission “SouthTRAC", the German research aircraft HALO will investigate the southern atmosphere and its effects on climate change in September and November 2019. Researchers from Goethe University will also be on board. 

The most important goal of the first phase of the SouthTRAC (Transport and Composition of the Southern Hemisphere UTLS) campaign is to investigate gravity waves on the southern tip of South America and over Antarctica. The second phase of the campaign in November will focus on the exchange of air masses between the stratosphere and the troposphere. During the transfer flights between Europe and South America, the scientists will also investigate the influence of the current fires in the Amazon rainforest on climate. In addition to the team of the atmosphere researcher Professor Andreas Engel from Goethe University, researchers from the German Aerospace Center (DLR), the Karlsruhe Institute of Technology (KIT), the research centre Jülich, and University Mainz have been in charge of the scientific planning. Groups from the Universities in Heidelberg and Wuppertal are also involved. 

Trace gases such as ozone and steam are effective greenhouse gases, and play an important role in climate change. Since the end of the 1980's, the Montreal Protocol regulates substances such as chlorofluorocarbons (CFC) because they thin out the ozone layer. It will take many decades, however, for the ozone layer to recover, especially the large ozone hole in Antarctica. In the campaign “SouthTRAC", researchers now want to investigate in detail what this means for climate change in the Southern Hemisphere. 

In addition to high levels of chlorine and bromine, the most important atmospheric requirements for the formation of the ozone hole above Antarctica are low temperatures and a reduced exchange of air masses with mid-latitudes. The Antarctic polar vortex is responsible for this. “We want to see how much chlorine and bromine is available to deplete the ozone in the lower stratosphere, especially in the polar vortex of the Southern Hemisphere, where the ozone hole is formed every year," explains Professor Andreas Engel. To do this, his group measures almost all relevant source gases. They pay special attention to short-lived substances that are highly variable and have hardly been quantified in the Southern Hemisphere so far. “We want to make data available so that chemical and climate models can more reliably portray the depletion of the ozone, the expected recovery of the stratospheric ozone, and the effects on climate," says the atmospheric researcher.

For this purpose, Professor Andreas Engel's team at the Institute for Atmosphere and Environment at Goethe University uses a gas chromatograph with mass spectrometer they developed themselves. This instrument can measure even traces of many chlorinated and brominated substances, although the measuring speed also has to be taken into account. On board a research aircraft things have to go quickly, because the resolution in time corresponds directly with the resolution in space. “At one to six minutes, depending on the substances, we're extremely fast for this measuring technique. In the lab, it takes almost five times as long. And everything we do in an aircraft has to be certified for air worthiness on top of it all. That requires a significant logistical effort," says Engel. 

In order to make these difficult measurements possible, some of which have to be carried out during a night shift, three to five members of the Institute for Atmosphere and Environment will be on location in Rio Grande on the southern tip of South America until the beginning of December, with a short break of three weeks in October. The measuring flights depart from here, and this is where the measuring instruments are taken care of as well. 

About HALO
The research aircraft HALO (High Altitude and Long Range) is a collaborative initiative of German environmental and climate research institutions. It is funded by grants from the Federal Ministry of Education and Research (BMBF), the Deutsche Forschungsgemeinschaft (DFG), the Heimholtz Association, the Max Planck Society, the Leibniz Association, the State of Bavaria, the Karlsruhe Institute of Technology (KIT), the research centre Jülich and the German Aerospace Center (DLR).

Images may be downloaded here: http://www.uni-frankfurt.de/81867109
Credit: See ending of file names.

Further information: Professor Andreas Engel, Institute for Atmosphere and Environment, Faculty of Geosciences, Riedberg Campus, phone: +49 69 798-40259, an.engel@iau.uni-frankfurt.de

 

Sep 9 2019
10:53

Professor Luciano Rezzolla and his team, together with 347 researchers from the worldwide Event Horizon Telescope Collaboration, have been awarded the Breakthrough Prize 2020 in recognition of their ground-breaking achievements

Black Hole: Important global award for astrophysicists at Goethe University

FRANKFURT. For their exceptional and fundamental achievements in capturing the first direct image of a black hole, researchers from the team headed by astrophysicist Professor Luciano Rezzolla of Goethe University, together with 347 scientists from the global Event Horizon Telescope Collaboration, will receive the Breakthrough Prize 2020, which comes with $ 3 million in prize money. With its 10 members, the Goethe University team is one of the largest in the entire collaboration, which comprises 140 institutions in total. 

With the aid of eight radio telescopes around the world, to which meanwhile another three have been added, the scientists succeeded in capturing the first direct visual evidence of the supermassive black hole at the centre of the galaxy Messier 87 in April 2019. The prize will be distributed equally among all the co-authors of the corresponding scientific publications, and will be awarded on 3rd November. 

Luciano Rezzolla's team made fundamental contributions to the theoretical interpretation of the results throughout all phases of the observations: using supercomputers, they simulated how material forms a ring-shaped disc as it orbits and is pulled into the black hole, and how the tremendous gravitation bends light rays around the black hole. It was also necessary to rule out various alternatives to black holes that are also compatible with the theory of relativity. “The confrontation of theory with observations is always a dramatic moment for a theoretical physicist. We were quite relieved, and also proud, that the observations matched our predictions so well," states Luciano Rezzolla. 

Goethe University President Professor Dr. Birgitta Wolff: “Together with Luciano Rezzolla and his team, we are delighted about this important global award. We warmly congratulate all of our colleagues who contributed to this achievement! We remember the enthusiasm of audience in the packed lecture hall on Campus Riedberg when Luciano Rezzolla and his colleagues from the European Consortium (Professor Michael Kramer from the Max Planck Institut für Radioastronomie in Bonn and Professor Heino Falcke from the Dutch Radboud University) first presented the results of their joint research at Goethe University on 17th  April 2019. It was a celebration of the power of fascination emanating even from abstract science. I hope that further ground-breaking research will be forthcoming from this great global collaboration." 

Goethe University Vice-President Professor Simone Fulda, who is responsible for research, said: “We are proud to have played such a prominent role as Goethe University in a true scientific breakthrough of global significance and congratulate Luciano Rezzolla and his team for the outstanding achievements that led to it. Physics is an important research focal point that has shaped Goethe University's research profile for many years." 

“It's a great honour and an enormous gratification to see that the work done at Goethe University has received the highest recognition and has contributed to pushing the limits of our understanding of fundamental physics. It is also a fair recognition of what has ultimately been a team effort and hence a shared burden and challenge of many scientists across the world," commented Luciano Rezzolla. 

As a collective, this year's Breakthrough Prize laureates probed the galaxies to capture the first image of a black hole. The jury has found remarkable the achievements by combining telescope after synchronizing them with atomic clocks, producing a virtual telescope as large as the Earth, to obtain unprecedented resolution. The image of the supermassive black hole at the centre of the Messier 87 galaxy was obtained after painstakingly analysing the data with novel algorithms and techniques, and reveals a bright ring marking the point where light orbits the black hole, surrounding a dark region where light cannot escape the black hole's gravitational pull. The black hole shadow matched the expectations of Einstein's theory of General Relativity. 

Collaboration Director Shep Doeleman of the Harvard-Smithsonian Center for Astrophysics, who will accept the prize on behalf of the collaboration at the ceremony on 3rd November 2019, says: "We set out to see the unseeable, and we needed to build a telescope as large as the Earth to do it. It sounds like science fiction, but we assembled an incredible global team of experts and used the most advanced radio telescopes on the planet to make it a reality. This breakthrough prize celebrates a new beginning in our study of black holes."

The “Breakthrough Prize Foundation" has prominent backers. Its founding members are Sergey Brin, Priscilla Chan and Mark Zuckerberg, Ma Huateng, Yuri und Julia Milner, and Anne Wojcicki. 

Links
Press release on the image of the black hole from 10th April 2019.  
Film material on the black hole (Simulations and background on the research at Goethe University) can be found here:
How we made the black hole visible. Short version 
How we made the black hole visible. Long version with personal statements
Simulations of the shadow of a black hole (English)
Simulations of the shadow of a black hole (Spanish) 

Further information: Prof. Luciano Rezzolla, Principal Investigator of the European Black Hole Cam Experiments, Institute for Theoretical Physcis, Faculty of Physics, Riedberg Campus, Telefon: +49 69 798 47871:, rezzolla@th.physik.uni-frankfurt.de; https://astro.uni-frankfurt.de/rezzolla/

 

Sep 5 2019
08:25

Commemorates heyday period in the 1920s 

“Historic Site” Plaque for Frankfurt Physics 

FRANKFURT. The 1920s were the golden age of quantum mechanics. Brilliant theoreticians and young, innovative thinkers poured the theory into its modern mathematical form. Their predictions inspired new experiments. At the Physics Institute of Frankfurt University headed by Max Born, physicists Otto Stern and Walter Gerlach made important contributions using a new experimental method. This will be commemorated by a “historic site" plaque that was unveiled Tuesday in a ceremony in the historic auditorium of the Jügelhaus, formerly the main Goethe University building on Bockenheim Campus. Once the Historical Monument Department has approved, the plaque will be mounted onto the former physics building at Robert-Mayer-Straße 2. 

“Everyone is familiar with Goethe, but Nobel Prize winner Otto Stern is still largely unknown,“ comments University President Birgitta Wolff. “The university named its new auditorium complex on Riedberg Campus after Otto Stern a few years ago. I'm delighted that a Historic Site Plaque now marks the location where Otto Stern succeeded with his pioneering experiments." 

The “historic site" plaque is awarded by the European Physical Society to commemorate important discoveries in physics in laboratories, institutes or cities throughout Europe. The former Institute of Theoretical Physics building in Frankfurt is the fourth location in Germany to be distinguished with this plaque. 

“The year 2019 presents a two-fold opportunity to remember the pioneer of quantum physics and Nobel Laureate Otto Stern," explains physics professor Horst Schmidt-Böcking, who authored a biography of Otto Stern together with the historian Karin Reich. In 1919, Otto Stern developed the molecular beam method, for which he received the Nobel Prize for Physics in 1943. In the iconic Stern-Gerlach experiment, completed in February 1922, the reality of space quantization of angular momentum had been demonstrated. The momentum resolution achieved corresponded to an energy resolution of a micro electron volt. In 1922, together with Walther Gerlach in the iconic Stern-Gerlach experiment, the reality of space quantization of angular momentum was demonstrated, also proving the angular momentum quantization in atoms for the first time. “At the same time, we commemorate the 50th anniversary of Otto Stern's death, who was forced to emigrate in 1933 because of his Jewish background," remarks Schmidt-Böcking. 

Otto Stern first settled in Pittsburgh and then Berkeley in 1945. In contrast to many other emigrants, he took every opportunity after the Second World War to meet with friends and colleagues at conferences in Europe. Horst Schmidt-Böcking has been in contact with Otto Stern's descendants in the United States in recent years and invited them to visit their uncle's old domain. Stern himself had no children. 

“The Historic Site Plaque also commemorates other important discoveries made at the Physics Institute," says Petra Rudolf, President of the European Physical Society. “In 1920 Max Born and Elisabeth Bormann first measured the free path of atoms in gases and the size of molecules. In 1921, the theoretician Alfred Landé postulated the coupling of angular momentum for the first time as the basis of intra-atomic electron dynamics." 

An international conference commemorating Otto Stern is taking place this week, as Wilhelm and Else Heraeus Seminar entitled “Otto Stern's Molecular Beam Research and its Impact on Science". Speakers include people who knew Stern such as his nephew Allen Templeton, scientific historians, and researchers whose experimental methods are based on the molecular beam method developed by Stern, such as magnetic resonance imaging, lasers and masers. The conference goes until 5th September. 

Today, the historical building is home to the Physical Association of Frankfurt. Founded in 1824, it is the oldest one in Germany and was already in existence in 1914 when the university opened. 

Further information: Dr. Horst Schmidt-Böcking, Institut für Kernphysik, Fachbereich Physik, Riedberg Campus, Tel.: +49 69 798 47002, hsb@atom.uni-frankfurt.de

 

Aug 21 2019
10:50

Theoretical physicists at Goethe University discovered that cultural processes are accelerating

Music charts are increasingly short-lived

FRANKFURT. Cultural processes are increasingly short-lived, showing in addition a growing tendency toward self-organisation. As a result, success is now governed by a universal law. This was discovered by the physicists Professor Claudius Gros and Lukas Schneider from Goethe University. Their object of research: 50 years of music charts. 

Since the 1960s, music charts have been compiled using the same criteria - sales profits. Charts therefore provide sets of comparable data spanning many decades, a circumstance that makes them particularly well-suited for the investigation of the long-term development of cultural time scales. This approach is also relevant beyond the cultural domain, in particular with regard to the pace of political opinion formation, which affects the dynamical stability of liberal democracies. 

In a new article published today in Royal Society Open Science, Lukas Schneider and Professor Claudius Gros from the Institute for Theoretical Physics at Goethe University demonstrate that the statistical characteristics, the composition, and the dynamics of the US, UK, Dutch and German pop album charts have changed significantly since the beginning of the 1990s. On the one hand, the diversity of the charts has doubled, or even tripled: Now there are significantly more albums making it to the top 100 or top 40 in a year. On the other hand, we now see that an album either starts off immediately as number one – or never reaches the top. In contrast, from the 1960s to the 1980s, successful albums needed four to six weeks to work their way from their starting position to the top slot. 

 The nature of an album's “lifetime" - the number of weeks an album has been listed – was found to have changed profoundly. Before the 1990s, the statistics of album lifetimes were governed by a Gauss distribution with a logarithmic argument (log normal). Today, the distribution of album lifetimes is characterised in contrast by a power law. The distribution of lifetimes is therefore universal, i.e., independent of the specifics of the process, a key characteristic of the final state of a self-organising process. To explain this development, the authors propose an information-theoretical approach to human activities. The assumption of Schneider and Gros is that humans strive continuously to optimise the information content of their experience and perceptions. Mathematically, information is captured by the Shannon entropy. According to Schneider and Gros, one needs to consider furthermore the Weber-Fechner law, which states that time and other variables are represented and stored in the brain not in a one-to-one ratio, but in a greatly compressed way (on a logarithmic scale). In this view, optimization of the information content of compressed experiences explains the observed chart statistics. 

Overall, the study by Schneider and Gros shows that chart dynamics has accelerated, proceeding today substantially faster than several decades ago. The authors conjecture that a similar acceleration could also be at work for the underlying socio-cultural processes, such as social and political opinion formation. As an earlier work by Gros shows, this could threaten the dynamical stability of modern democracies, as the functioning of democracies is based on reliable temporal ties between electorate and political institutions. These temporal ties are threatened when the time scale of political opinion formation and that of the delayed decision processes drift increasingly apart. (Claudius Gros, Entrenched time delays versus accelerating opinion dynamics: Are advanced democracies inherently unstable? European Physical Journal B 90, 223 (2017). https://epjb.epj.org/articles/epjb/abs/2017/11/b170341/b170341.html )

Publication: Lukas Schneider, Claudius Gros, Five decades of US, UK, German and Dutch music charts show that cultural processes are accelerating, Royal Society Open Science (2019) https://royalsocietypublishing.org/doi/10.1098/rsos.190944 

Further information: Professor Claudius Gros, Institute for Theoretical Physics, Riedberg Campus, telephone: +41 69 798 47818, E-mail gros07@itp.uni-frankfurt.de.

 

Aug 5 2019
11:51

Frankfurt researchers have explained the mechanism of regulator SidJ in detail / Accelerated publication in Nature

Surprising insight into Legionnaires’ disease

FRANKFURT. In order to control cellular processes and thwart the immune system, the bacterium Legionella pneumophilia, the cause of the notorious Legionnaires' disease, releases hundreds of enzymes. Biochemists at Goethe University have now elucidated important details in the interaction of bacterial effectors. They discovered how the regulatory enzyme SidJ keeps other dangerous virulence factors in check. 

The incidence of Legionnaires' disease has increased in the past two decades. The natural habitat of Legionella is freshwater biotopes, where they mainly reproduce in amoebae. In addition, Legionella can also colonize water tanks or pipes and spread, for example, via poorly maintained air-conditioning systems. Contaminated aerosols are released into the air and trigger the infection. The pathogens cause, among others, pneumonia, which is often fatal in elderly patients or individuals with a weak immune system. 

What makes Legionella so dangerous is its ability to multiply in phagocytes of the immune system by secreting virulence factors. Some of these effectors – the enzymes of what is known as the SidE family – are so toxic that without tight control they would instantly kill their host cells. However, since Legionella needs the host cells in order to multiply, it has developed a sophisticated mechanism for the precise metering of SidE enzyme activity. Details of this process are now reported by scientists at Goethe University and from Grenoble in the journal Nature. 

They have shown that the regulator SidJ also released by Legionella works as an antidote to SidE enzymes, thus ensuring accurate control of SidE activity. The SidJ regulator is a glutamylase, i.e. it has a rare enzyme activity that allows amino acid glutamates to be linked together to form chains. In this case, SidJ attacks the central glutamate of SidE enzymes and inhibits their activity. So far, little is known about glutamylases – so the scientists were all the more surprised when they discovered that it is precisely this type of enzyme which is important for the coordinated interaction of the virulence factors of Legionella. 

“This is a typical example of how completely unpredictable results drive research. Such discoveries are what make science such a fascinating and exciting profession," says Professor Ivan Dikic from the Institute of Biochemistry II and the Buchmann Institute for Molecular Life Sciences at Goethe University. “We can only gain a molecular understanding of the complex world of bacterial infections by working in interdisciplinary teams and combining methods from modern biochemistry and proteomics with cell and structural biology techniques." 

The researchers also revealed how SidJ is activated in host cells: It requires the calcium-binding protein calmodulin found in mammalian cells. Cryo-electron microscopy played an important role in explaining the structure of the calmodulin-SidJ complex. “Glutamylation as a protein modification is understudied. Our finding that Legionella pneumophilia uses exactly this mechanism to sustain the infection certainly argues for more research in this field. For example, the extent to which Legionella utilizes this modification to regulate other cellular processes is completely unclear," explains Dr. Sagar Bhogaraju, who led the microscopic examinations at the European Molecular Biology Laboratory (EMBL) in Grenoble. 

This so far unknown mechanism opens up new possibilities for research to inhibit the spread of Legionella in the host organism. “We're currently working on eliminating SidJ selectively by developing inhibitors for the glutamylase domain. In addition to the use of antibiotics, they could prevent the spread of Legionella pneumophilia in phagocytes," explains Dikic. 

Publication: Sagar Bhogaraju, Florian Bonn, Rukmini Mukherjee, Michael Adams, Moritz M. Pfleiderer, Wojciech P. Galej, Vigor Matkovic, Sissy Kalayil, Donghyuk Shin, Ivan Dikic: Inhibition of SidE ubiquitin ligases through SidJ/Calmodulin catalyzed glutamylation, in Nature 22. Juli 2019 DOI: 10.1038/s41586-019-1440-8 https://www.nature.com/articles/s41586-019-1440-8 

Further information: Professor Ivan Dikic, Institute of Biochemistry II, Niederrad Campus, and Buchmann Institute for Molecular Life Sciences, Riedberg Campus, Tel.: +49(0)69-6301-5964, Email: dikic@biochem2.uni-frankfurt.de.